
Counterfactual evaluation
of machine learning

models

Michael Manapat
@mlmanapat

Stripe

About me
• Distant Past: Graduate student and Postdoctoral

Fellow in Math

• Previously: Engineer at Google

• Now: Manager of the Machine Learning team at
Stripe (10 engineers and data scientists as of
8/2015)

mlm@stripe.com | @mlmanapat

About Stripe
• Unified tools and APIs for accepting and

managing payments online
stripe.Charge.create(
 amount=40000,
 currency="usd",
 source={
 "number": '4242424242424242',
 "exp_month": 12,
 "exp_year": 2016,
 "cvc": "123"
 }
)

Charge Outcomes
• Nothing

• Refunded

• Disputed ("charged back")

• "Card testing"

• "Card cashing"

• Can take > 60 days to get
raised

4

Model Building
• December 31st, 2013

• Train a binary classifier for
disputes on data from Jan
1st to Sep 30th

• Validate on data from Oct
1st to Oct 31st (need to wait
~60 days for labels)

• Based on validation data, pick
a policy for actioning scores:  
block if score > 50

Questions

• Validation data is > 2 months old. How is the
model doing?

• What are the production precision and recall?

• Business complains about high false positive
rate: what would happen if we changed the
policy to "block if score > 70"?

Next Iteration
• December 31st, 2014. We

repeat the exercise from a
year earlier

• Train a model on data from
Jan 1st to Sep 30th

• Validate on data from Oct
1st to Oct 31st (need to wait
~60 days for labels)

• Validation results look much
worse

Next Iteration

• We put the model into production, and the
results are terrible

• From spot-checking and complaints from
customers, the performance is worse than
even the validation data suggested

• What happened?

Next Iteration

• Existing model already blocking a lot of fraud

• Training and validating only on data for which we
had labels

• Possible solution: we could run both models in
parallel

Fundamental Problem

For evaluation, policy changes, and retraining,
we want the same thing:

An approximation of the distribution of charges
and outcomes that would exist in the absence of
our intervention (blocking)

First attempt
• Let through some fraction of charges that we

would ordinarily block

• Straightforward to compute precision

if score > 50:
if random.random() < 0.05:

allow()
else:

block()

Recall

• Total "caught" fraud = (4,000 * 1/0.05)

• Total fraud = (4,000 * 1/0.05) + 10,000

• Recall = 80,000 / 90,000 = 89%

1,000,000 charges Score < 50 Score > 50

Total 900,000 100,000

Not Fraud 890,000 1,000

Fraud 10,000 4,000

Unknown 0 95,000

Training
• Train only on charges that were not blocked

• Include weights of 1/0.05 = 20 for charges that
would have been blocked if not for the random
reversal

from sklearn.ensemble import \
RandomForestRegressor
...
r = RandomForestRegressor(n_estimators=10)
r.fit(X, Y, sample_weight=weights)

Training
• Use weights in validation (on hold-out set) as

well

from sklearn import cross_validation
X_train, X_test, y_train, y_test = \
cross_validation.train_test_split(
data, target, test_size=0.2)

r = RandomForestRegressor(...)
...
r.score(
X_test, y_test, sample_weight=weights)

Better Approach
• We're letting through 5% of all charges we think

are fraudulent. Policy:

Very likely
to be
fraud

Could go
either way

Better Approach
• Propensity function: maps

classifier scores to P(Allow)

• The higher the score, the
lower probability we let the
charge through

• Get information on the area we
want to improve on

• Letting through less "obvious"
fraud ("budget" for evaluation)

Better Approach
def propensity(score):

Piecewise linear/sigmoidal
...

ps = propensity(score)
original_block = score > 50
selected_block = random.random() < ps
if selected_block:

block()
else:

allow()
log_record(

id, score, ps, original_block,
selected_block)

ID Score p(Allow) Original
Action

Selected
Action Outcome

1 10 1.0 Allow Allow OK

2 45 1.0 Allow Allow Fraud

3 55 0.30 Block Block -

4 65 0.20 Block Allow Fraud

5 100 0.0005 Block Block -

6 60 0.25 Block Allow OK

Analysis
• In any analysis, we only consider samples that

were allowed (since we don't have labels
otherwise)

• We weight each sample by 1 / P(Allow)

• "geometric series"

• cf. weighting by 1/0.05 = 20 in the uniform
probability case

ID Score P(Allow) Weight Original
Action

Selected
Action Outcome

1 10 1.0 1 Allow Allow OK

2 45 1.0 1 Allow Allow Fraud

4 65 0.20 5 Block Allow Fraud

6 60 0.25 4 Block Allow OK

Evaluating the "block if score > 50" policy

Precision = 5 / 9 = 0.56
Recall = 5 / 6 = 0.83

Evaluating the "block if score > 40" policy

Precision = 6 / 10 = 0.60
Recall = 6 / 6 = 1.00

ID Score P(Allow) Weight Original
Action

Selected
Action Outcome

1 10 1.0 1 Allow Allow OK

2 45 1.0 1 Allow Allow Fraud

4 65 0.20 5 Block Allow Fraud

6 60 0.25 4 Block Allow OK

Evaluating the "block if score > 62" policy

Precision = 5 / 5 = 1.00
Recall = 5 / 6 = 0.83

ID Score P(Allow) Weight Original
Action

Selected
Action Outcome

1 10 1.0 1 Allow Allow OK

2 45 1.0 1 Allow Allow Fraud

4 65 0.20 5 Block Allow Fraud

6 60 0.25 4 Block Allow OK

Analysis

• Precision, recall, etc. are estimates

• Variance of the estimates decreases the
more we allow through

• Bootstrap to get error bars

• Pick rows from the table uniformly at random
with replacement and repeat computation

New models
• Train on weighted data (as in the uniform case)

• Evaluate (i.e., cross-validate) using the weighted
data

• Can test arbitrarily many models and policies
offline (bandit: exploitation vs. exploration)

Technicalities
• Independence and random seeds

• ? =>

Conclusion

• If some policy is actioning model scores, you
can inject randomness in production to
understand the counterfactual

• Instead of a "champion/challenger" A/B test, you
can evaluate arbitrarily many models and
policies in this framework

Thanks!
• Work by Ryan Wang (@ryw90), Roban Kramer

(@robanhk), and Alyssa Frazee (@acfrazee)

• We're hiring engineers/data scientists!

• mlm@stripe.com | @mlmanapat

