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About me
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Fellow in Math 

• Previously: Engineer at Google 

• Now: Manager of the Machine Learning team at 
Stripe (10 engineers and data scientists as of  
8/2015) 
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About Stripe
• Unified tools and APIs for accepting and 

managing payments online 
stripe.Charge.create(
  amount=40000,
  currency="usd",
  source={
    "number": '4242424242424242',
    "exp_month": 12,
    "exp_year": 2016,
    "cvc": "123"
  }
)



Charge Outcomes
• Nothing 

• Refunded 

• Disputed ("charged back") 

• "Card testing" 

• "Card cashing" 

• Can take > 60 days to get 
raised
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Model Building
• December 31st, 2013 

• Train a binary classifier for 
disputes on data from Jan 
1st to Sep 30th 

• Validate on data from Oct 
1st to Oct 31st (need to wait 
~60 days for labels) 

• Based on validation data, pick 
a policy for actioning scores:  
block if score > 50



Questions

• Validation data is > 2 months old. How is the 
model doing? 

• What are the production precision and recall? 

• Business complains about high false positive 
rate: what would happen if we changed the 
policy to "block if score > 70"?



Next Iteration
• December 31st, 2014. We 

repeat the exercise from a 
year earlier 

• Train a model on data from 
Jan 1st to Sep 30th 

• Validate on data from Oct 
1st to Oct 31st (need to wait 
~60 days for labels) 

• Validation results look much 
worse



Next Iteration

• We put the model into production, and the 
results are terrible 

• From spot-checking and complaints from 
customers, the performance is worse than 
even the validation data suggested 

• What happened?



Next Iteration

• Existing model already blocking a lot of fraud 

• Training and validating only on data for which we 
had labels 

• Possible solution: we could run both models in 
parallel



Fundamental Problem

For evaluation, policy changes, and retraining, 
we want the same thing: 

An approximation of the distribution of charges 
and outcomes that would exist in the absence of 
our intervention (blocking)



First attempt
• Let through some fraction of charges that we 

would ordinarily block 

• Straightforward to compute precision

if score > 50:
if random.random() < 0.05:

allow()
else:

block()



Recall

• Total "caught" fraud = (4,000 * 1/0.05) 

• Total fraud = (4,000 * 1/0.05) + 10,000 

• Recall = 80,000 / 90,000 = 89%

1,000,000 charges Score  < 50 Score > 50

Total 900,000 100,000

Not Fraud 890,000 1,000

Fraud 10,000 4,000

Unknown 0 95,000



Training
• Train only on charges that were not blocked 

• Include weights of 1/0.05 = 20 for charges that 
would have been blocked if not for the random 
reversal 

from sklearn.ensemble import \
RandomForestRegressor
...
r = RandomForestRegressor(n_estimators=10)
r.fit(X, Y, sample_weight=weights)



Training
• Use weights in validation (on hold-out set) as 

well 

from sklearn import cross_validation
X_train, X_test, y_train, y_test = \
cross_validation.train_test_split(
data, target, test_size=0.2)

r = RandomForestRegressor(...)
...
r.score(
X_test, y_test, sample_weight=weights)



Better Approach
• We're letting through 5% of all charges we think 

are fraudulent. Policy: 

Very likely 
to be 
fraud

Could go 
either way



Better Approach
• Propensity function: maps 

classifier scores to P(Allow) 

• The higher the score, the 
lower probability we let the 
charge through 

• Get information on the area we 
want to improve on 

• Letting through less "obvious" 
fraud ("budget" for evaluation)



Better Approach
def propensity(score):

# Piecewise linear/sigmoidal
...

ps = propensity(score)
original_block = score > 50
selected_block = random.random() < ps
if selected_block:

block()
else:

allow()
log_record(

id, score, ps, original_block, 
selected_block)



ID Score p(Allow) Original 
Action

Selected 
Action Outcome

1 10 1.0 Allow Allow OK

2 45 1.0 Allow Allow Fraud

3 55 0.30 Block Block -

4 65 0.20 Block Allow Fraud

5 100 0.0005 Block Block -

6 60 0.25 Block Allow OK



Analysis
• In any analysis, we only consider samples that 

were allowed (since we don't have labels 
otherwise) 

• We weight each sample by 1 / P(Allow)

• "geometric series"

• cf. weighting by 1/0.05 = 20 in the uniform 
probability case



ID Score P(Allow) Weight Original 
Action

Selected 
Action Outcome

1 10 1.0 1 Allow Allow OK

2 45 1.0 1 Allow Allow Fraud

4 65 0.20 5 Block Allow Fraud

6 60 0.25 4 Block Allow OK

Evaluating the "block if score > 50" policy

Precision = 5 / 9 = 0.56
Recall = 5 / 6 = 0.83



Evaluating the "block if score > 40" policy

Precision = 6 / 10 = 0.60
Recall = 6 / 6 = 1.00

ID Score P(Allow) Weight Original 
Action

Selected 
Action Outcome

1 10 1.0 1 Allow Allow OK

2 45 1.0 1 Allow Allow Fraud

4 65 0.20 5 Block Allow Fraud

6 60 0.25 4 Block Allow OK



Evaluating the "block if score > 62" policy

Precision = 5 / 5 = 1.00
Recall = 5 / 6 = 0.83

ID Score P(Allow) Weight Original 
Action

Selected 
Action Outcome

1 10 1.0 1 Allow Allow OK

2 45 1.0 1 Allow Allow Fraud

4 65 0.20 5 Block Allow Fraud

6 60 0.25 4 Block Allow OK



Analysis

• Precision, recall, etc. are estimates 

• Variance of the estimates decreases the 
more we allow through 

• Bootstrap to get error bars 

• Pick rows from the table uniformly at random 
with replacement and repeat computation



New models
• Train on weighted data (as in the uniform case) 

• Evaluate (i.e., cross-validate) using the weighted 
data 

• Can test arbitrarily many models and policies 
offline (bandit: exploitation vs. exploration) 





Technicalities
• Independence and random seeds 

• ? => 



Conclusion

• If some policy is actioning model scores, you 
can inject randomness in production to 
understand the counterfactual 

• Instead of a "champion/challenger" A/B test, you 
can evaluate arbitrarily many models and 
policies in this framework



Thanks!
• Work by Ryan Wang (@ryw90), Roban Kramer 

(@robanhk), and Alyssa Frazee (@acfrazee) 

• We're hiring engineers/data scientists! 

• mlm@stripe.com | @mlmanapat


